目录

背景介绍	2
使用方法	
一、安装 image J 及插件	3
1、下载地址	
2、插件安装方法	3
二、Deconvolution 使用方法	4
1、生成标准的 PSF	4
2、数据 Deconvolution	5

背景介绍

反卷积是一种计算密集型图像处理技术,通过该技术,可以提高显微图像的对比度和清晰度。与共聚焦显微镜不同,宽视场显微镜允许探测器接收到的所有光通过,因此许多来自非焦面的光也会被接收到,使得图像变得模糊,损失很多精细的细节。反卷积技术的主要任务就是去除非焦平面上的模糊。

点扩展函数(**Point Spread Function**, PSF)描述了一个成像系统对于点光源或者是点物体的响应,也可以理解其为光学系统对于脉冲的响应函数,一般用该指标来衡量重建后的系统分辨率。在荧光显微镜、望远镜或是光学显微镜的非相干成像系统中,图像形成过程是线性的,并由线性系统理论描述。这意味着两个单独成像的物体 A 和 B 的成像结果等同于两物体各自成像结果的加和。

如上图所示,在线性系统中,对于任意成像目标 Object 为 *I*₁和其对应的像 Image 为 *I*₂可以表示成: *I*₂ = *I*_{1*}*h*; *h* 是系统函数,同时这个卷积系数 *h* 也是 PSF,因为当 *I*₁为冲击 函数时: *I*₂ = *h*。因此一个理论的系统 PSF 可以反过来通过去卷积算法来消除系统的失真, 还原所取图像本来的样子。需要注意的是,由于取到的单张图片中非焦面的信息来自于多 个层面,2D 的去卷积只能消除焦平面横向相邻像素的弥散影响,对非焦平面的背景不能很 好的去除,因此反卷积在 3D 图像中处理后的效果会更加清晰、准确。

使用方法

一、安装 image J 及插件

1、下载地址

下载地址: <u>https://imagej.nih.gov/ij/</u>

所需插件: Diffraction_PSF_3D 、 Parallel_Spectral_Deconvolution&

DeconvolutionLab2;

插件下载地址: <u>http://fiji.sc/Diffraction_PSF_3D</u> http://fiji.sc/Parallel_Spectral_Deconvolution_

&<u>http://bigwww.epfl.ch/algorithms/deconvolutionlab/</u>

2、插件安装方法

J;			
	12 00 00 00	~	· · · · ·
📙 jre	2020/2/14 13:24	文件夹	
📙 luts	2020/2/14 13:24	文件夹	
macros	2020/2/14 13:24	文件夹	
📙 plugins	2020/2/14 13:25	文件夹	
ij.jar	2019/6/18 14:14	JAR 文件	2,175 KB
ImageJ.cfg	2019/6/18 14:36	CFG 文件	1 KB
🛓 ImageJ	2019/6/18 14:14	应用程序	386 KB

1) 将下载后文件复制到 Image J 文件夹→plugins 文件夹中后, 重启 Image

2) 重新打开后,在工具栏中 plugins 菜单下即可找到 Diffraction PSF 3D、

Parallel Spectral Deconvolution、DeconvolutionLab2 三个功能。

二、Deconvolution 使用方法

1、生成标准的 PSF

a) 首先需要根据实际拍摄条件生成一个标准的 PSF, 使用 Diffraction PSF 3D 功能

Plugins→Diffraction PSF 3D;

🛓 Specify psf	×
Ravleich resolution: 0.6*lambda/NA	
Index of refraction of the media	1.000
Numerical Aperture in*sin(theta)	0. 75
Wavelength (perhaps in nm)	525.0
Longitudinal Spherical Aberration at max aperture, same units	0.00
Image pixel spacing, same units (ccd cell spacing / magnification)	160.00
Slice spacing (z), same units	0.00
Width, pixels	1376
Height, pixels	1024
Depth, slices	1
Normalization	Sum of nivel values = 1
Inte	r Sr
PSF in dB	
	OK Cancel

Index of refraction of the media: 拍摄时使用物镜的所匹配的介质的折射率,

例如: Air:1.000 Water:1.333 等, 可在网上查找

NA: 所使用物镜的数值孔径

wavelength: 荧光的发射波长 (注意不是激发波长)

Longitudinal spherical aberration 纵向球差畸变:由于大部分实验室都无法测

量该参数,填写 0.00 对于计算结果相对来说比较好一些

Image pixel spacing: 查找所使用 CCD 的 pixel size 参数,可在 CCD 的技术手

册中查找。若 pixel size:6.45 μm x 6.45 μm,40×的物镜拍摄,那么 Image

pixel spacing 为 6.45 µm /40=0.16µm,此处的单位为 nm,.所以应该填写 160

Slice spacing:<mark>单位为 nm.</mark> 2D: 填写 0

3D: 实际所取图像的步长,若 3D 数据中,每 50nm 取一张图片,填写 50 Width&Height: 即图像行&列的像素点个数;若取图的大小为 1024×512, width: 1024; height: 512 Depth: 2D:填写 1; 3D: 即图像的层数

Nomolization:可以保持默认值

Title:所生成 PSF 的文件名

用到。

b) 所有数据填写完成后,点击 OK,则会生成一个 2D/3D 的 PSF,点击保存,后面会

⊈ PSF (75%) 1376x1024 pixels; 32-bit; 5.4MB				 -	×

2、数据 Deconvolution

2D 灰度图:

使用 Image J 打开需要处理的图片 (注意:该算法只能计算灰度图),所以先介绍 grey 时的方法,然后介绍如何处理 color 数据。注意 2D 的数据中不要存在过曝点以及噪声过高 的情况,会影响处理结果。

a) 首先应确保数据为灰度图 (8/16/32 bit), 打开要处 理的图像和前面生成的 PSF 图片数据

b) 打开 Parallel Spectral Deconvolution (Plugins \rightarrow Parallel Spectral

Deconvolution→2D Spectral deconvolution/3D spectral deconvolution)

Grey 2D:	🛓 Parallel	Spectral Deconvolution 2D 1.9 — 🗆 🗙
	Image:	test3.tif
	PSF:	test4.tif
	Method:	Generalized Tikhonov (reflexive)
	Stencil:	Laplacian 👻
	Resizing:	None 👻
	Output:	Same as source 👻
	Precision:	Single V Threshold: 0.0
	Regularizat	ion parameter: 0.0
	Max numbe	er of threads (power of 2): 2
	✓ Auto re	gularization parameter 🛛 Show padded image
		Deconvolve Update Cancel

Image: 需要处理的数据

PSF: 上一步生成的 PSF

Method: Generalize Tikhonov (reflexive) algorithm

剩下的参数为<mark>默认值</mark>,点击 deconvolve,生成处理后的数据。

2D 彩色图片:

在理解上面的步骤的基础上,介绍 color image 的处理方法:

首先将 color image (RGB) 图像通过通道拆分成三个通道 (Red, Green, Blue),

👱 Specify psf	×
Rayleigh resolution: 0.6*lambda/NA	
Index of refraction of the media	1.000
Numerical Aperture, n*sin(theta)	0. 75
Wavelength (perhaps in nm)	525.0
Longitudinal Spherical Aberration at max. aperture, same units	0.00
Image pixel spacing, same units (ccd cell spacing / magnification)	160.00
Slice spacing (z), same units	0.00
Width, pixels	1376
Height, pixels	1024
Depth, slices	1
Normalization	Sum of pixel values = 1 💌
Title	PSF
PSF in dB	
	OK Cancel
江思・江工城理比「う」的、共中「う」的参数相次元的反射版で	

个通道分别根据使用荧光的发射波长生成三个理论的 PSF

然后分别对三个通道使用对应的 PSF 进行 deconvolution 处理后,再进行通道合 并。

通道拆分: Image→Color→Split channels

通道合并: Image→Color→Merge channels

3D 灰度图: 去卷积对于 3D 图像来说,可以有更好的效果,它可以有效地交叉

参考不同深度的数据以消除各层的模糊。

a) 首先将 3D 的图片(灰度图)保存在一个文件夹中,拖到工具栏中:(若不是灰度图,

请参照 color 3D deconvolution 的方法)

🛓 ImageJ		_	\times
File Edit Image Proces	s Analyze Plugins Window Help		
	🕂 🔨 A 🔍 🖑 🕖 📿 Dev 🔏	8 8	\gg
< <drag and="" drop="">></drag>			

拖入后, 弹出对话框:

🛓 Open Folder	×
Open all 104 images in "CElegans-CY3" as a stack?	
Convert to RGB	
T Use Virtual Stack	
Yes No Cancel	

什么都不勾选,点击 yes。

注意:如果 3D 的图片很大,如果对所有的数据进行处理会花费很长时间,建议对 3D stack 进行裁剪 (crop),只将感兴趣的区域裁剪出来并保存。

Crop 处理方法: 打开 stack,在工具栏中选择所需要的形状进行 ROI 选取,然后 image→crop,点击后会生成 crop 后的图片,进行保存

b) 然后,使用 Diffraction PSF 3D 生成一个 3D 的 PSF,进行保存。

注意:若是裁剪后的图片,根据实际的 Width& Height 进行填写

例如:原始数据为 672×712 pixels, crop 后成为 160×182 pixels,在生成 PSF 中 Width&Height 应填写 160&182。

c) 最后,使用 Deconvolution lab2 进行去卷积

Plugins→Deconvolutionlab2→Deconvolutionlab2 Run

🕌 Deconvolution	DeconvolutionLab2			
Deconvolution	Advanced Scrip	ting About		
Image	CE	legans-CY3 8 bit.tif	Choose	e▼ Check ▼
-image file C:\us	sers \gaoxinvel \Des	atop\Chiegans-Ci3 8	011.111	
► PSF	CY	psf.tif	Choos	e▼ Check ▼
-psf file C:\User	rs\ gaoxinwei\Desk t	op/CT psf.tif		
 Algorithm 	RL	. 10		Check
Richardson-Lu	су			▼ RL
		Iterations N		
► Path	Im	ageJ		Default
Help	Close	Batch	Run	Launch

点击 Choose,将之前保存的 8bit 的图像和生成的 PSF 载入,3D deconvolution 使用 Richardson-Lucy system,迭代次数 N=10,根据数据特点进行迭代次数的选择,注意不要过度迭代(其他算法可以百度其原理,根据数据特点进行使用),最后 点击 Run。

d) 使用最大投影的方式比较处理前后的效果

Z projection: Image→stacks→ Z projection

🛓 ZProjection	×
Start slice: Stop slice:	1 104
Projection type	Max Intensity
	OK Cancel

Projection type 选择 Max intensity 最大投影

3D color deconvolution

a) 先将数据拆分成 3 个通道 image→color→split channels,将会得到 3 个灰度图

的 stack, 分别是 R, G, B 通道;

- b) 根据荧光的不同发射波长,生成 3 个理论 PSF(R,G,B)
- c) 然后分别对 R,G,B 通道进行 deconvolution 处理,参照 3D grey

deconvolution 步骤;

d) 处理后, 再将 R, G, B 处理后的通道合并在一起, image→color→merge

channels; 注意: 不要选择 create composite 选项;

🛓 Merge Chan	inels X
C1 (red):	微信截图_20200216172754.png (red) ▼
C2 (green):	微信截图_20200216172754.png (green) 💌
C3 (blue):	微信截图_20200216172754.png (blue) 👻
C4 (gray):	*None*
C5 (cyan):	*None*
C6 (magenta):	*None*
C7 (yellow):	*None*
Create co Keep sou	mposite rce images urce LUTs
	OK Cancel

3D 去卷积的局限性:

- 可处理数据最大的放大倍数为 40×, 即 40×的物镜,对于 100×的物镜的到数据处理 后并不能得到特别锐利的数据,因为我们的显微镜无法实现理想的层切厚度以及相机 的解析力(140 万像素)不够高。但是对于 2D 的数据任何放大倍数都可以使用。
- 2、去卷积算法对最小分辨率有要求,但是具体的数值没有测试出来;越高的分辨率,计 算出的结果越好
- 3、得到的一个准确的理论 PSF 对于数据的处理非常重要。所以我们要确认 diffraction
 3D PSF 没有错,尤其是 CCD Cell Spacing 和 index of refraction 两个参数没有错误。